لگاریتم ها دارای قوانینی هستند که در این بخش به چند قانون آن اشاره می کنیم.

قانون اول: حاصل جمع لگاریتم a در مبنای c با لگاریتم b در مبنای c برابر است با لگاریتم aضربدر b در مبنای c که به صورت زیر نمایش داده می شود.

مثال:

 

قانون دوم: حاصل تفریق لگاریتم a در مبنای c از لگاریتم b در مبنای c برابر است با لگاریتم a تقسیم بر b در مبنای c که به صورت زیر نمایش داده می شود.

مثال:

قانون سوم: حاصل لگاریتم a به توان m در مبنای b به توان n برابر m تقسیم n ضربدر لگاریتم a در مبنای b که به صورت زیر نمایش داده می شود.

مثال:


موضوعات مرتبط: رياضي ، ،
برچسب‌ها:

تاريخ : پنج شنبه 16 آبان 1392برچسب:, | 14:49 | نویسنده : مهدي مهدوي | نظر بدهید

به تساوی زیر نگاه کنید :

بله ۸۱ برابر است با توان دوم ِ مجموع ارقامش.

آیا اعداد دیگری با این ویژگی وجود دارند؟

به عدد زیر نیز توجه کنید :

ریاضی سرا    www.riazisara.ir

حتما ً شگفت زده شده اید !

 

                                                                                           محمد امیری و امیر محمد سلطانی(لطفا نظر بدهید)

                                                                                                                                                                                     riazisara.ir

                                                                           

 


موضوعات مرتبط: رياضي ، ،
برچسب‌ها:

تاريخ : پنج شنبه 16 آبان 1392برچسب:, | 14:46 | نویسنده : مهدي مهدوي | نظر بدهید

اگر مجموع تعدادي عدد فرد  متوالي را داشته باشيم، عدد وسطي برابر است با حاصل تقسيم مجموع عدد ها بر تعدادشان.

سوال) مجموع سه عدد فرد متوالي عدد  153

 است . عدد بزرگتر چند است؟

۴۹و۵۱و۵۳

اگر مجموع دو عدد اول ،عددي فرد باشد ،يكي از آن دو عدد  اول حتما 2 است

سوال) مجموع دو عدد اول 31 مي باشد .اختلاف آن دو عدد چند است؟

 

 ۲۹=۲-۳۱

۲۷=۲-۲۹

بنا براین آن دو عدد ۲و۲۹ است. و اختلاف آندو عدد ۲۷ می باشد.


موضوعات مرتبط: رياضي ، ،
برچسب‌ها:

تاريخ : جمعه 10 آبان 1392برچسب:, | 13:55 | نویسنده : مهدي مهدوي | نظر بدهید
مراحل حل یک مساله ریاضی
1 ) جستجو برای الگو: همواره کار حل مساله را با نوعی ادراک شهودی از مساله شروع می کنیم و با بررسی چند حالت خاص به سوی الگوسازی برای حل کامل آن جلو می رویم.
۲) رسم شکل: در هر مساله ای که امکانپذیر باشد رسم یک شکل (اعم از هندسی یا یک نمودار و غیره) می تواند در یافتن حل مساله الهام بخش باشد و رابطه بین اجزا مساله را بهتر نمایان می سازد.
۳) صورتبندی مساله معادل: در بخش قبل دیدیم که گام نخست در حل مساله عبارت است از جمع آوری داده - جستجو - فهمیدن مساله - برقراری ارتباط بین اجزا - حدس زدن و تجزیه تحلیل. ولی اگر همه این کارها به روش معقولی میسر نباشد چه کنیم؟ یعنی اینکه ممکن است کارهای محاسباتی خیلی پیچیده باشد و یا به سادگی نتوانیم حالتهای خاصی را مطرح کنیم تا به بینش لازم برسیم.آنچه در چنین شرایطی توصیه می شود این است که مساله را با مساله ای معادل ولی ساده تر جایگزین کنیم. راه کلی در این گونه معادل سازی به بینش و تجربه های عمومی باز می گردد ولی کارهایی از قبیل دستکاریهای جبری یا مثلثاتی و تفسیر مجدد مساله با زبانی دیگر می تواند موثر باشد.
۴) تغییر مساله: در بعضی مسائل می توانیم مساله مورد نظر را به مساله دیگری تبدیل کنیم. این دو مساله لزوما معادل یکدیگر نیستند ولی حل مساله دوم حل مساله اول را نتیجه می دهد.
۵) انتخاب نمادهای مناسب: از نخستین گامها در حل مساله های ریاضی تبدیل مساله به صورتی نمادین می باشد. در انتخاب نمادها باید هر ایده کلی را ملحوظ داشته و آن را با نمادی بیان کنیم. بی دقتی در انتخاب نمادها ممکن است به از بین رفتن یا مبهم شدن بعضی از روابط منجر شود.
۶) استفاده از تقارن: وجود تقارن در یک مساله موجب می شود که با عملیات کمتری مساله را به جواب برسانیم.
۷) تجزیه به حالتهای ساده تر: گاهی اوقات می توان یک مساله را به تعدادی مساله ساده تر و کوچکتر تبدیل کرد که هر کدام از این مسائل ساده تر را می توان جداگانه در نظر گرفت.
۸) کار عقب رونده: کار عقب رونده یعنی اینکه نتیجه مورد نظر را مفروض گرفته شروع به استنتاج هایی از آن کنیم تا به یک مساله حل شده برسیم. در این صورت گامهای معکوسی را در نظر بگیریم تا به نتیجه مطلوب دست پیدا کنیم.
۹) بررسی نقیض: استفاده از تناقض یعنی مفروض گرفتن نادرستی حکم و با استنتاج به نتیجه نادرست یا متناقضی رسیدن از روشهای آشنا در ریاضیات است.
۱۰) زوجیت: ایده ساده زوج و فرد بودن یکی از ابزارهای بسیار قوی در حل مساله است که کاربردهای وسیعی دارد.
۱۱) بررسی حالتهای حدی: در برخورد اولیه با مساله بعضی اوقات تغییردادن پارامترها بین حدهای پایین و بالای ممکن آنها ایده هایی برای حل مساله به همراه خواهد داشت.

۱۲) تعمیم: معمولا ساده سازی یک مساله راهگشای حل آن است. اما در بعضی موارد حالت تعمیم یافته مساله سهل تر قابل حل است و حالت مورد نظر را می توان به عنوان یک حالت خاص نتیجه گرفت. در واقع ایده تعمیم و در کنار آن مجرد سازی ویژگی خاص ریاضیات نوین است. در پایان اشاره می کنم که سعی کنید یک مساله را در صورت امکان به چند روش حل کنید. این کار باعث بهبود سرعت و خلاقیت شما در حل مسائل دیگر می شود. روشهای مختلف حل مساله بخشهایی از زوایای پنهان مساله را برای شما آشکار می کند

mathroom.ir


موضوعات مرتبط: رياضي ، ،
برچسب‌ها:

تاريخ : جمعه 10 آبان 1392برچسب:, | 13:55 | نویسنده : مهدي مهدوي | نظر بدهید
) اگر همه ی داده ها با مقدار ثابتی جمع شوند میانگین با همان مقدار ثابت جمع می شود .

مثال: میانگین عددهای 5 و 7 و 1 و 4 و 3 برابر 4 می باشد و میانگین عدد های 15 و 17 و 11 و 14 و 13 برابر 14 است.

 

2) اگر همه ی داده ها در عدد ثابتی ضرب شوند میانگین در همان عدد ضرب می شود .

مثال: میانگین عدد های 5 و 7 و 1 و 4 و 3 برابر 4 می باشد و میانگین عدد های 25 و 35 و 5 و20 و 15 برابر 20 است.


موضوعات مرتبط: رياضي ، ،
برچسب‌ها:

تاريخ : جمعه 10 آبان 1392برچسب:, | 13:54 | نویسنده : مهدي مهدوي | نظر بدهید

 
اگر یک خط روی صفحه ی مختصات داده شود و معادله ی آن را بخواهند چه می کنید ؟ دراین

 صورت دو نقطه روی خط در نظر می گیریم به شرط آن که این دو نقطه را بتوانیم تعیین مختصات

 

نماییم سپس رابطه ی بین طول وعرض این نقاط را تشخیص می دهیم.

 

معادله ای که از مبداً مختصات می گذرد در حالت کلی به چه صورت است ؟ y=ax

 

چه زمانی دو خط با هم برابراند ؟ هرگاه شیب آنها باهم برابر باشد دو خط باهم موازی هستند.

 

برای نوشتن معادله ی دو نقطه ی داده شده که طول آنها با هم برابر است چه می کنید؟ معادله ی

 

 خط به صورت x = عدد طول

 

 واگر عرضها باهم برابر باشند معادله ی خط به صورت y =عددعرض است.

نظ


موضوعات مرتبط: رياضي ، ،
برچسب‌ها:

تاريخ : جمعه 10 آبان 1392برچسب:, | 13:53 | نویسنده : مهدي مهدوي | نظر بدهید
 
اگر يك عبارت با چند عمل داشته باشيم ترتيب اعمال عمل ها به صورت زير مي باشد:

                 تفريق و جمع 4       تقسيم و ضرب3          جذر و توان2        پرانتز1

 

هر عددي را كه به صو رت كسر بتوان نمايش داد‌ ( صورت و مخرج عضو اعداد صحيح ) عدد گويا است و اعداد گويا را با Q نمايش مي دهيم.

     *   اعداد اعشاري با ريشه كسري جزء اعداد گويا مي باشند كه عبارت اند از :

a)     اعشاري مختوم مانند :1/36

b)     اعشاري متناوب ساده مانند :  2/33333و  1/36363636

c)      اعشاري متناوب مركب مانند: ....1/3555555

      *   اعداد اعشاري با ريشه راديكالي كه عضو اعداد گويا نمي باشند. مانند : 1/2546983155


برچسب‌ها:

تاريخ : جمعه 10 آبان 1392برچسب:, | 13:51 | نویسنده : مهدي مهدوي | نظر بدهید


موضوعات مرتبط: زيست شناسي ، ،
برچسب‌ها:

تاريخ : یک شنبه 28 مهر 1392برچسب:, | 23:16 | نویسنده : مهدي مهدوي | نظر بدهید
 

 

پنج اصل متعارفی ، یا مفهوم عمومی اقلیدس

١_چیزهایی که با یک چیز مساوی اند ، با یکدیگر نیز مساوی اند

 

٢_اگر چیزهای مساوی به چیزهای مساوی اضافه شوند کلها مساوی اند

 

٣_اگر چیزهای مساوی از چیزهای مساوی کم شوند ، باقیمانده ها مساوی اند

 

۴_چیزهایی که بر یکدیگر منطبق شوند با یکدیگر مساوی اند

 

۵_کل از جزء بزرگتر است

و پنج اصل موضوع هندسی از اقلیدس

 

1

از هر نقطه میتوان خط مستقیمی به هر نقطۀ دیگر کشید

2-

 

هر خط مستقیم متناهی را می توان روی همان خط به طور نامحدود امتداد داد

3-

 

میتوان دایره ای با هر نقطۀ دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم شده از مرکز آن ترسیم کرد

4-

 

همۀ زوایای قائمه با هم مساوی اند

5-

 

اگر خط مستقیمی دو خط مستقیم را قطع کند به طوری که مجموع زاویای داخلی یک طرف آن کمتر از دو قائمه باشد این دو خط مستقیم اگر به طور نامحدود امتداد داده شوند ، در طرفی که دو زاویه مجموعا از دو قائمه کمترند ، همدیگر را قطع خواهند کرد


برچسب‌ها:

تاريخ : شنبه 28 مهر 1392برچسب:, | 9:22 | نویسنده : مهدي مهدوي | نظر بدهید

   

تصور کنید می‌خواهید ثابت کنید بی‌نهایت زوج عدد اول وجود دارد که تفاضل‌شان 2 است؛ به جای آن ثابت می‌کنید بی‌نهایت زوج عدد اول وجود دارد که تفاضل‌شان کمتر از 70,000,000 است. این بزرگ‌ترین کشف ریاضی سال‌های اخیر است.

تصور کنید قرار است ثابت کنید تعداد نامتناهی زوج عدد اول وجود دارند که تفاضل آنها دو واحد است. به جای آن ثابت می‌کنید تعداد نامتناهی زوج عدد اول وجود دارد که تفاضل آنها کمتر از 70 میلیون رقم است. آیا فکر می‌کنید این شکستی مفتضحانه است و بهتر است درباره آن سکوت کنید؟ اگر این طور فکر می‌کنید چیزی از دنیای شگفت‌انگیز ریاضیات نمی‌دانید.
اگر داستان آلیس در سرزمین عجایب را خوانده باشید حتما با لانه خرگوش آشنا هستید. آلیس، در یک عصر تابستانی خرگوشی را دنبال می‌کند و به دنبال او قدم به لانهاش می‌گذارد و بلافاصله جهانش تغییر می‌کند، هیچ‌چیز آن طوری نیست که به نظر می‌آمد باید باشد. در این دنیا اولویت‌ها و منطق‌ها و رفتارها تغییر می‌کند. آلیس همان آلیس است، اما با قدم نهادن در لانه خرگوش دیدش به جهان تغییر می‌کند و از دل آن است که می‌تواند جهان‌های جدیدی را نه تنها برای خود کشف کند که خوانندگان این داستان را به کشف دنیایی فراسوی روزمرگی راهنمایی کند.
این لانه افسانه‌ای خرگوش فقط زاییده ذهن ریاضی‌دانی با نام مستعار لوییس کرول نیست که داستانی را هنگام قایق‌رانی برای شاگردش تعریف کرده است. در دنیای واقعی دروازه‌های زیادی وجود دارد که وقتی قدم به آن بگذارید دنیای متفاوتی در برابر چشمان شما شکل می‌گیرد؛ دنیایی که اگر بیش از اندازه به روزمرگی معتاد شده باشید به همان اندازه برایتان شگفت‌انگیز و معجزه‌آسا خواهد بود. ریاضیات یکی از این حفره‌های جادویی جهان است، دنیایی برآمده از منطق که تفسیرگر جهان ماست و رشد و پیشرفتش و فضا و ساختارش ساز و کار ویژه خود را دارد. وقتی به این دنیا وارد می‌شوید آن‌چه در ابتدای این متن خواندید دیگر شکست به شمار نمی‌رود بلکه موفقیتی تاریخی و یکی از مهم‌ترین کشف‌های ریاضیاتی معاصر بدل می‌شود.

 

امن‌ترین اعداد جهانزمانی کارل گاوس ریاضیات را ملکه علوم و نظریه اعداد را ملکه ریاضیات نامیده بود. شاید اگر اعداد اول را از محترم ترین ساکنان قلمرو این ملکه بشماریم سخنی به زیاده نگفته باشیم. اعداد اول اعداد مهمی هستند. نه فقط به این دلیل که امروز بخش بزرگی از اطمینانی که ما به رمزنگاری در کارهای روزمره داریم (مانند تراکنش‌های بانکی یا خرید‌های اینترنتی با کمک کارت‌های اعتباری) به خاطر استفاده از این اعداد است، بلکه به دلیل ماهیت و جایگاهی که در بین اعداد طبیعی دارند مهم به شمار می‌روند. اعداد طبیعی همان اعداد آشنایی هستند که هنگام شمارش به کار می‌بریم، از یک شروع می‌شوند و به ترتیب هر بار یکی به آنها افزوده می‌شود و مجموعه ای مانند ...و3و2و1 می‌سازند که به طور نامتناهی ادامه می‌یابد. در این بین بعضی از اعداد وجود دارند (غیر از 1) که فقط می‌توان آنها را به خودشان و به 1 تقسیم کرد. مثلا شما عدد 6 را می‌توانید به 1، 2، 3 و 6 تقسیم کنید و باقی مانده شما صفر شود؛ اما عددی مانند 3 فقط قابل تقسیم به 3 و 1 است همین‌طور عددی مانند 11، 17 یا 1- 2195,000× 2,003,663,613. چنین اعداد طبیعی را که تنها قابل تقسیم بر خود و یک هستند، اعداد اول می‌نامند.

شما به راحتی می‌توانید چندین عدد اول را بشمارید، 2،3،5،7،11،13،17،19،23و ... اما هرچقدر اعداد طبیعی بزرگ‌تر می‌شوند فراوانی و یا چگالی (تعداد اعداد اول در یک فاصله مشخص) نیز کاهش می‌یابد. هنوز فرمولی پیدا نشده که بتواند اعداد اول را تولید کند و هنوز دقیق نمی‌دانیم که توزیع این اعداد در بین اعداد طبیعی چگونه است. آیا با اضافه شدن به اعداد طبیعی ممکن است به جایی برسیم که فاصله میان دو عدد اول متوالی نیز به سمت بی نهایت میل کند و به جایی برسیم که هیچ دو عدد اول نزدیک به همی را نتوانیم پیدا کنیم؟

 

یک فرض قدیمییک فرض قدیمی باعث می‌شود ریاضی‌دان‌ها خوش‌بین باشند که چنین اتفاقی نمی‌افتد. این فرض که قدمت آن به دوران اقلیدس (سده سوم پیش از میلاد) می‌رسد، بیان می‌کند که تعداد نامتناهی زوج عدد اول (دو عدد اول) وجود دارند که فاصله آنها تنها دو واحد است. مثلا 3 و 5 را در نظر بگیرید این دو عدد هر دو اول هستند و تنها دو واحد با هم فاصله دارند. 11 و 13 نیز همین ویژگی را دارند همین‌طور 17 و 19 و همینطور دو رقم  1- 2195,000× 2,003,663,613 و 1+ 2195,000× 2,003,663,613. حال سوال اینجاست که آیا چنین زوج اعدادی را می‌توان وقتی اعضای رشته اعداد طبیعی به اندازه کافی بزرگ باشند هم پیدا کرد؟ اگر این طور باشد باید تعداد نامتناهی از این زوج اعداد وجود داشته باشد.
این فرض هنوز هم یکی از قدیمی‌ترین مسایل حل نشده ریاضیات است. علت این‌که به آن حدس می‌گویند، این است که اگرچه تا الان ریاضی‌دان‌ها نتوانسته‌اند وجود تعداد نامتناهی از این زوج‌ها را ثابت کنند، نتوانسته‌اند عدم وجود آنها را نیز ثابت کنند و در عین حال آن مقداری از اعداد اول را که پیدا کرده‌اند در بردارنده چنین زوج اعدادی هستند. چون در ریاضیات یا یک گزاره درست است و یا نیست؛ پس تا زمان اثبات و یا رد منطقی و ریاضی، این گزاره به عنوان فرض باقی می‌ماند.
تلاش‌ها برای بررسی این وضعیت و رسیدن به نتیجه ای مناسب در سال 2005/1384 به اوج خود رسید. در این سال دنیل گلدستون از دانشگاه سن‌خوزه به همراه دو همکارش با انتشار مقاله‌ای نشان دادند تعداد نامتناهی زوج عدد اول وجود دارد که فاصله آنها حداکثر 16 واحد است. این گام بزرگی به شمار می‌رفت و می‌توانست ریاضی‌دان‌ها را در رسیدن به اثباتی برای نشان دادن وجود تعداد نا‌متناهی زوج عدد اول با فاصله دو رقمی امیدوار کند؛ اما در این اثبات از فرض دیگری استفاده شده بود که خود آن فرض هنوز اثبات نشده است.

 

یک جهش بزرگ
به گزارش نیچر
، وقتی ایتانگ ژانگ (Yitang Zhang ، صاحب تصویر به نمایش درآمده در آغاز متن) ریاضی‌دان دانشگاه نیوهمپ‌شایر نتیجه تحقیق خود را برای گروهی از همکارانش ارایه کرد و وقتی که ریاضی‌دان‌های پیشرو در این زمینه مقاله وی را مشاهده کردند، این احتمال مطرح شد که گام غول‌آسایی در حل این مساله تاریخی و مهم ریاضیاتی برداشته شده باشد. به نظر می‌آید او بدون آن‌که از هیچ فرض تاییدنشده‌ای کمک گرفته باشد و بدون آن‌که ایراد و نقص آشکاری در روش کارش مشاهده شود، توانسته است ثابت کند که تعداد نامتناهی زوج عدد اول وجود دارند که حداکثر فاصله آنها از هم 70 میلیون واحد است.
شاید به نظر خیلی امیدوارکننده نباشد وقتی به دنبال زوج اعدادی با اختلاف دو واحد باشید و به جای آن به تفاوت 70 میلیون واحدی مواجه می‌شوید؛ اما به یاد داشته باشید شما در دنیای شگفت‌انگیز ریاضیات هستید. مدتهاست از آستانه لانه خرگوش عبور کرده‌اید و باید قوانین این دنیا را بپذیرید. اگر این روش از پس بررسی‌های دقیق ریاضی‌دانان سربلند خارج شود، موفقیتی بزرگ به شمار می‌رود. درست است که 70 میلیون واحد فاصله به نظر خیلی زیاد می‌آید، اما درنهایت فاصله‌ای معنی‌دار و محدود است؛ یعنی ما توانسته‌ایم تعداد نامتناهی زوج عدد اول پیدا کنیم که فاصله میان آنها کمتر از مرزی مشخص است. این مرز اکنون به نظر می‌رسد 70 میلیون باشد.
گلدستاین که خودش در تحقیق اخیر نقشی نداشته اما یکی از ریاضی‌دان‌های فعال در زمینه اعداد اول است، می‌گوید: «انتظار ندارم این روش را بتوان به گونه‌ای به کار برد که در نهایت ما را به صورت اصلی فرض که زوج اعداد با فاصله دو رقم است برساند. اما واقعیت این است که باورم نمی‌شد در زمانی که زنده هستم شاهد چنین پیشرفتی باشم.»
این اثبات (اگر تایید شود) در نهایت دید بهتری نسبت به توزیع اعداد اول در اختیار ریاضی‌دان‌ها قرار می‌دهد و به شناخت آنها از اعداد اول کمک می‌کند. شاید بپرسید این‌ها به چه کار روزمره ما می‌آید؟ شاید برای کسانی که بیرون لانه خرگوش ایستاده‌اند و مشغول خواندن روزنامه‌ای از خبرهای روز هستند، کارآیی نداشته باشد اما این ریاضی‌دانان هستند که در ناب‌ترین شکل ممکن به بررسی و کشف ساختمان موجودی مشغولند که جهان ما و دنیای ما و اندیشه ما براساس آن بنا شده است.


موضوعات مرتبط: رياضي ، ،
برچسب‌ها:

تاريخ : شنبه 27 مهر 1392برچسب:, | 15:17 | نویسنده : مهدي مهدوي | نظر بدهید
صفحه قبل 1 ... 4 5 6 7 8 ... 39 صفحه بعد
.: Weblog Themes By SlideTheme :.